We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
translated by 谷歌翻译
推理是人类认知和智力的关键支柱。在过去的十年中,我们目睹了自然语言处理的巨大收益和大型语言模型的前所未有的缩放。最近的工作表征了很少射击技术的能力,例如思想链,可以在大语言模型中模仿人类的推理。这个标志性的功能很少,连同不断扩展的语言模型相结合,打开了解决各种任务的可能性的远景,例如数学单词问题,代码完成和常识性推理。促使思想链(COT)通过提供中间步骤并敦促模型遵循相同的过程,从而进一步推动了模型的性能。尽管具有令人信服的性能,但在这些模型中推理能力的起源却很少探索。这项工作启动了对大语言模型中推理机制的更深入了解的初步步骤。我们的工作围绕查询模型,同时在提示中控制除一个组件以外的所有组件外:符号,模式和文本。然后,我们分析查询之间的性能差异。我们的结果表明,在提示中存在事实模式对于COT的成功并不是必需的。尽管如此,我们从经验上表明,仅依靠模式也不足以获得高质量的结果。我们认为文本具有常识性知识和意义。我们详尽的经验分析提供了定性的例子,说明了文本和模式之间的共生关系。这种对COT的系统理解使我们能够设计简洁的思想链,被称为CCOT,在其中修剪文本和模式只能保留其关键角色,同时以PAR或更高的求解任务率交付。
translated by 谷歌翻译
我们提出了FlowGen,这是一个灵感来自于双过程心理理论的启发的图生成模型,该理论会逐步生成大图。根据在当前步骤完成图的难度,将图形生成路由到快速〜(较弱)或慢速〜(更强)模型。快速和缓慢的模型具有相同的体系结构,但参数数量和强度有所不同。现实图表上的实验表明,我们的图形可以成功生成类似于一小部分大型模型生成的图形。
translated by 谷歌翻译
通常通过过去的选择来告知机器学习中的评估,例如要使用哪些数据集或指标。该标准化可以使用排行榜对平等基础进行比较,但是随着出现更好的替代方案,评估选择变得不佳。这个问题在自然语言生成中尤其相关,该语言需要不断改善的数据集,指标和人类评估以提出确定性的主张。为了使遵循最佳模型评估实践更加容易,我们介绍了GEMV2。新版本的一代,评估和指标基准为数据集,模型和指标开发人员提供了模块化基础架构,以使彼此受益。GEMV2支持40种记录的数据集中51种语言。所有数据集的模型都可以在线评估,我们的交互式数据卡创建和渲染工具使得在Living Benchmark中添加新数据集变得更加容易。
translated by 谷歌翻译
最终用户如何提供反馈,如果部署的结构化预测模型生成不正确的输出,则提供反馈?我们的目标是允许用户通过对模型输出的反馈来直接通过交互直接纠正错误。我们创建动态内存架构,具有越来越多的反馈记忆,关于输出中的错误。鉴于新的,看不见的输入,我们的模型可以使用类似于类似的过去的错误状态的反馈。在脚本生成任务上,我们凭经验显示模型的学习有效地应用反馈(最多30分),同时避免在部署后的类似过去错误(在看不见的方案集上提高了10分。这是加强部署模型的第一步,潜在地扩大其实用程序。
translated by 谷歌翻译
最终用户如何提供反馈,如果部署的结构化预测模型产生不一致的输出,忽略人类语言的结构复杂性?这是一个新兴主题,最近合成或约束设置的进展,下一个大的飞跃需要在现实世界中进行测试和调整模型。我们呈现了一个新的DataSet,interscript,包含有关已部署模型的用户反馈,该模型生成复杂的日常任务。依据包含8,466个数据点 - 输入是可能是错误的脚本和用户反馈,输出是修改的脚本。我们分散了两种用例,这可能会在互动学习中显着推进最先进的。数据集可用于:https://github.com/allenai/interscript。
translated by 谷歌翻译
In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method.
translated by 谷歌翻译
Sentence simplification aims at making the structure of text easier to read and understand while maintaining its original meaning. This can be helpful for people with disabilities, new language learners, or those with low literacy. Simplification often involves removing difficult words and rephrasing the sentence. Previous research have focused on tackling this task by either using external linguistic databases for simplification or by using control tokens for desired fine-tuning of sentences. However, in this paper we purely use pre-trained transformer models. We experiment with a combination of GPT-2 and BERT models, achieving the best SARI score of 46.80 on the Mechanical Turk dataset, which is significantly better than previous state-of-the-art results. The code can be found at https://github.com/amanbasu/sentence-simplification.
translated by 谷歌翻译
Modern deep learning models are over-parameterized, where the optimization setup strongly affects the generalization performance. A key element of reliable optimization for these systems is the modification of the loss function. Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima, which arguably have better generalization abilities. In this paper, we focus on a variant of SAM known as mSAM, which, during training, averages the updates generated by adversarial perturbations across several disjoint shards of a mini-batch. Recent work suggests that mSAM can outperform SAM in terms of test accuracy. However, a comprehensive empirical study of mSAM is missing from the literature -- previous results have mostly been limited to specific architectures and datasets. To that end, this paper presents a thorough empirical evaluation of mSAM on various tasks and datasets. We provide a flexible implementation of mSAM and compare the generalization performance of mSAM to the performance of SAM and vanilla training on different image classification and natural language processing tasks. We also conduct careful experiments to understand the computational cost of training with mSAM, its sensitivity to hyperparameters and its correlation with the flatness of the loss landscape. Our analysis reveals that mSAM yields superior generalization performance and flatter minima, compared to SAM, across a wide range of tasks without significantly increasing computational costs.
translated by 谷歌翻译
Accurate segmentation of live cell images has broad applications in clinical and research contexts. Deep learning methods have been able to perform cell segmentations with high accuracy; however developing machine learning models to do this requires access to high fidelity images of live cells. This is often not available due to resource constraints like limited accessibility to high performance microscopes or due to the nature of the studied organisms. Segmentation on low resolution images of live cells is a difficult task. This paper proposes a method to perform live cell segmentation with low resolution images by performing super-resolution as a pre-processing step in the segmentation pipeline.
translated by 谷歌翻译